Copied to
clipboard

G = C42⋊Dic7order 448 = 26·7

1st semidirect product of C42 and Dic7 acting via Dic7/C7=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C421Dic7, C28.19C42, (C4×C28)⋊1C4, (C2×C28).6Q8, (C4×Dic7)⋊3C4, (C2×C4).13D28, C28.28(C4⋊C4), C71(C4.9C42), (C2×C28).104D4, C4.24(C4×Dic7), (C2×C4).2Dic14, C4.33(D14⋊C4), C28.9(C22⋊C4), C4.8(Dic7⋊C4), C4.12(C4⋊Dic7), C42⋊C2.1D7, (C22×C14).42D4, (C22×C4).57D14, C23.16(C7⋊D4), C22.17(D14⋊C4), C22.3(Dic7⋊C4), C2.8(C14.C42), C14.7(C2.C42), (C22×C28).120C22, C23.21D14.7C2, C22.10(C23.D7), (C2×C7⋊C8)⋊1C4, (C2×C14).3(C4⋊C4), (C2×C28).56(C2×C4), (C2×C4).139(C4×D7), (C2×C4).20(C7⋊D4), (C2×C4).72(C2×Dic7), (C2×C4.Dic7).7C2, (C7×C42⋊C2).1C2, (C2×C14).89(C22⋊C4), SmallGroup(448,88)

Series: Derived Chief Lower central Upper central

C1C28 — C42⋊Dic7
C1C7C14C2×C14C22×C14C22×C28C23.21D14 — C42⋊Dic7
C7C28 — C42⋊Dic7
C1C4C42⋊C2

Generators and relations for C42⋊Dic7
 G = < a,b,c,d | a4=b4=c14=1, d2=c7, ab=ba, cac-1=ab2, dad-1=ab-1, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 340 in 94 conjugacy classes, 47 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, Dic7, C28, C28, C2×C14, C2×C14, C42⋊C2, C42⋊C2, C2×M4(2), C7⋊C8, C2×Dic7, C2×C28, C2×C28, C22×C14, C4.9C42, C2×C7⋊C8, C4.Dic7, C4×Dic7, C4⋊Dic7, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C22×C28, C2×C4.Dic7, C23.21D14, C7×C42⋊C2, C42⋊Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D7, C42, C22⋊C4, C4⋊C4, Dic7, D14, C2.C42, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C4.9C42, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C14.C42, C42⋊Dic7

Smallest permutation representation of C42⋊Dic7
On 112 points
Generators in S112
(1 63 42 107)(2 57 36 101)(3 65 37 109)(4 59 38 103)(5 67 39 111)(6 61 40 105)(7 69 41 99)(8 75 54 94)(9 83 55 88)(10 77 56 96)(11 71 50 90)(12 79 51 98)(13 73 52 92)(14 81 53 86)(15 87 30 82)(16 95 31 76)(17 89 32 84)(18 97 33 78)(19 91 34 72)(20 85 35 80)(21 93 29 74)(22 60 45 104)(23 68 46 112)(24 62 47 106)(25 70 48 100)(26 64 49 108)(27 58 43 102)(28 66 44 110)
(1 9 25 31)(2 10 26 32)(3 11 27 33)(4 12 28 34)(5 13 22 35)(6 14 23 29)(7 8 24 30)(15 41 54 47)(16 42 55 48)(17 36 56 49)(18 37 50 43)(19 38 51 44)(20 39 52 45)(21 40 53 46)(57 77 64 84)(58 78 65 71)(59 79 66 72)(60 80 67 73)(61 81 68 74)(62 82 69 75)(63 83 70 76)(85 111 92 104)(86 112 93 105)(87 99 94 106)(88 100 95 107)(89 101 96 108)(90 102 97 109)(91 103 98 110)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 56)(2 55)(3 54)(4 53)(5 52)(6 51)(7 50)(8 43)(9 49)(10 48)(11 47)(12 46)(13 45)(14 44)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(21 28)(29 38)(30 37)(31 36)(32 42)(33 41)(34 40)(35 39)(57 100 64 107)(58 99 65 106)(59 112 66 105)(60 111 67 104)(61 110 68 103)(62 109 69 102)(63 108 70 101)(71 87 78 94)(72 86 79 93)(73 85 80 92)(74 98 81 91)(75 97 82 90)(76 96 83 89)(77 95 84 88)

G:=sub<Sym(112)| (1,63,42,107)(2,57,36,101)(3,65,37,109)(4,59,38,103)(5,67,39,111)(6,61,40,105)(7,69,41,99)(8,75,54,94)(9,83,55,88)(10,77,56,96)(11,71,50,90)(12,79,51,98)(13,73,52,92)(14,81,53,86)(15,87,30,82)(16,95,31,76)(17,89,32,84)(18,97,33,78)(19,91,34,72)(20,85,35,80)(21,93,29,74)(22,60,45,104)(23,68,46,112)(24,62,47,106)(25,70,48,100)(26,64,49,108)(27,58,43,102)(28,66,44,110), (1,9,25,31)(2,10,26,32)(3,11,27,33)(4,12,28,34)(5,13,22,35)(6,14,23,29)(7,8,24,30)(15,41,54,47)(16,42,55,48)(17,36,56,49)(18,37,50,43)(19,38,51,44)(20,39,52,45)(21,40,53,46)(57,77,64,84)(58,78,65,71)(59,79,66,72)(60,80,67,73)(61,81,68,74)(62,82,69,75)(63,83,70,76)(85,111,92,104)(86,112,93,105)(87,99,94,106)(88,100,95,107)(89,101,96,108)(90,102,97,109)(91,103,98,110), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,43)(9,49)(10,48)(11,47)(12,46)(13,45)(14,44)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(21,28)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(57,100,64,107)(58,99,65,106)(59,112,66,105)(60,111,67,104)(61,110,68,103)(62,109,69,102)(63,108,70,101)(71,87,78,94)(72,86,79,93)(73,85,80,92)(74,98,81,91)(75,97,82,90)(76,96,83,89)(77,95,84,88)>;

G:=Group( (1,63,42,107)(2,57,36,101)(3,65,37,109)(4,59,38,103)(5,67,39,111)(6,61,40,105)(7,69,41,99)(8,75,54,94)(9,83,55,88)(10,77,56,96)(11,71,50,90)(12,79,51,98)(13,73,52,92)(14,81,53,86)(15,87,30,82)(16,95,31,76)(17,89,32,84)(18,97,33,78)(19,91,34,72)(20,85,35,80)(21,93,29,74)(22,60,45,104)(23,68,46,112)(24,62,47,106)(25,70,48,100)(26,64,49,108)(27,58,43,102)(28,66,44,110), (1,9,25,31)(2,10,26,32)(3,11,27,33)(4,12,28,34)(5,13,22,35)(6,14,23,29)(7,8,24,30)(15,41,54,47)(16,42,55,48)(17,36,56,49)(18,37,50,43)(19,38,51,44)(20,39,52,45)(21,40,53,46)(57,77,64,84)(58,78,65,71)(59,79,66,72)(60,80,67,73)(61,81,68,74)(62,82,69,75)(63,83,70,76)(85,111,92,104)(86,112,93,105)(87,99,94,106)(88,100,95,107)(89,101,96,108)(90,102,97,109)(91,103,98,110), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,43)(9,49)(10,48)(11,47)(12,46)(13,45)(14,44)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(21,28)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(57,100,64,107)(58,99,65,106)(59,112,66,105)(60,111,67,104)(61,110,68,103)(62,109,69,102)(63,108,70,101)(71,87,78,94)(72,86,79,93)(73,85,80,92)(74,98,81,91)(75,97,82,90)(76,96,83,89)(77,95,84,88) );

G=PermutationGroup([[(1,63,42,107),(2,57,36,101),(3,65,37,109),(4,59,38,103),(5,67,39,111),(6,61,40,105),(7,69,41,99),(8,75,54,94),(9,83,55,88),(10,77,56,96),(11,71,50,90),(12,79,51,98),(13,73,52,92),(14,81,53,86),(15,87,30,82),(16,95,31,76),(17,89,32,84),(18,97,33,78),(19,91,34,72),(20,85,35,80),(21,93,29,74),(22,60,45,104),(23,68,46,112),(24,62,47,106),(25,70,48,100),(26,64,49,108),(27,58,43,102),(28,66,44,110)], [(1,9,25,31),(2,10,26,32),(3,11,27,33),(4,12,28,34),(5,13,22,35),(6,14,23,29),(7,8,24,30),(15,41,54,47),(16,42,55,48),(17,36,56,49),(18,37,50,43),(19,38,51,44),(20,39,52,45),(21,40,53,46),(57,77,64,84),(58,78,65,71),(59,79,66,72),(60,80,67,73),(61,81,68,74),(62,82,69,75),(63,83,70,76),(85,111,92,104),(86,112,93,105),(87,99,94,106),(88,100,95,107),(89,101,96,108),(90,102,97,109),(91,103,98,110)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,56),(2,55),(3,54),(4,53),(5,52),(6,51),(7,50),(8,43),(9,49),(10,48),(11,47),(12,46),(13,45),(14,44),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22),(21,28),(29,38),(30,37),(31,36),(32,42),(33,41),(34,40),(35,39),(57,100,64,107),(58,99,65,106),(59,112,66,105),(60,111,67,104),(61,110,68,103),(62,109,69,102),(63,108,70,101),(71,87,78,94),(72,86,79,93),(73,85,80,92),(74,98,81,91),(75,97,82,90),(76,96,83,89),(77,95,84,88)]])

82 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I4J4K4L4M7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28AP
order122224444444444444777888814···1414···1428···2828···28
size1122211222444428282828222282828282···24···42···24···4

82 irreducible representations

dim11111112222222222244
type+++++-++-+-+
imageC1C2C2C2C4C4C4D4Q8D4D7Dic7D14Dic14C4×D7D28C7⋊D4C7⋊D4C4.9C42C42⋊Dic7
kernelC42⋊Dic7C2×C4.Dic7C23.21D14C7×C42⋊C2C2×C7⋊C8C4×Dic7C4×C28C2×C28C2×C28C22×C14C42⋊C2C42C22×C4C2×C4C2×C4C2×C4C2×C4C23C7C1
# reps1111444211363612666212

Matrix representation of C42⋊Dic7 in GL6(𝔽113)

96460000
33170000
000010
008103036
001126900
0065825010
,
11200000
01120000
0098000
0009800
0000980
0000098
,
101120000
100240000
00112000
00011200
000010
00131201
,
15360000
0980000
0014400
007711200
0082671530
00112829898

G:=sub<GL(6,GF(113))| [96,33,0,0,0,0,46,17,0,0,0,0,0,0,0,8,112,65,0,0,0,103,69,82,0,0,1,0,0,50,0,0,0,36,0,10],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,98,0,0,0,0,0,0,98,0,0,0,0,0,0,98,0,0,0,0,0,0,98],[10,100,0,0,0,0,112,24,0,0,0,0,0,0,112,0,0,13,0,0,0,112,0,12,0,0,0,0,1,0,0,0,0,0,0,1],[15,0,0,0,0,0,36,98,0,0,0,0,0,0,1,77,82,112,0,0,44,112,67,82,0,0,0,0,15,98,0,0,0,0,30,98] >;

C42⋊Dic7 in GAP, Magma, Sage, TeX

C_4^2\rtimes {\rm Dic}_7
% in TeX

G:=Group("C4^2:Dic7");
// GroupNames label

G:=SmallGroup(448,88);
// by ID

G=gap.SmallGroup(448,88);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,253,64,387,1123,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=1,d^2=c^7,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽